
Content Distribution in an Event
Oriented World
September 2008

Ian Koenig

Copyright © Ian Koenig
(professional.iankoenig.com)

Introducing a Pattern for Content Distribution

Content

Master

Pre-Render

Engine

Presentation

Content

Creation

Content Distribution
Pattern

S
e
r
v
ic

e
A

p
p

li
c
a
ti

o
n

As content traverses the network from creation to presentation,
there is a standard pattern defining “best practices”.

Content Creation – Focuses on the process of creating content
including editing and modifying content. Content may exist in
an “unpublished” state.

Content Master – Focuses on creating the “single version of
the truth”. This is part of Master Data Management.

Pre-Render Engine – Focuses on “making predictable queries
fast”. This often implies transforming the data model received
from the master into one easily render-able.

Presentation – Is what you ultimately get.

2

Copyright © Ian Koenig
(professional.iankoenig.com)

Extending the Pattern for Content Distribution

Content Distribution
Pattern

Often, the process of Content mastering involves aggregating
content from multiple sources, including external ones

Ingestion Interface – The Boundary Interface (owned
by the Master) that consumes content “published” by
Creation systems and acquired from 3rd party sources.

Content

Master

Pre-Render

Engine

Presentation

S
e
r
v
ic

e
A

p
p

li
c
a
ti

o
n

Ingestion

Interface

Data Service

I/F

Data Service Interface – The Boundary Interface
between Content Masters and Application Pre-renderer
Engines including the publish-side contract of the
master and the consume-side contract of the pre-
renderers

Application Service Interface – The Boundary
Interface between Application Pre-renderer Engines and
presentation engines (or other applications). Often,
this is a web service

App Service

I/F

3

Copyright © Ian Koenig
(professional.iankoenig.com)

4

Why do we need this pattern?

Because:

• Most companies accrete content silos organically,
either by acquisition or by the individual practices of
individual businesses. Even if they did not, the
concept of a Service Oriented architecture implies
that as you carve the overall functional architecture
into independent services, you need an information
architecture to put the content based services back
together in a consistent fashion

• A content silo is a content set that is tightly coupled
between the content master, who collects and stores
the content and the application processes that
present the content for analysis / display.

• Many silos provide an API directly from the master
DB, forcing the presentation layer to do all the pre-
rendering “business logic”, which is not properly
isolated. Its also messy to aggregate content from
multiple sources.

• Sometimes it is the U/I that “stitches” it all back
together creating the “Frankenstein effect”

Content

Master

Service

Interface

Present

Content

Creation

Pre-

Render

?

User Interface “stitching”

Copyright © Ian Koenig
(professional.iankoenig.com)

Content Silos are inflexible for multiple reasons

Presentation

5

What we want is to decouple the tiers into
independent services so that we can build more
sophisticated applications and re-use content
(both created and derived content) to the
greatest extent possible

Content Distribution Pattern

S
e
r
v
ic

e
A

p
p

li
c
a
ti

o
n

o
r

Copyright © Ian Koenig
(professional.iankoenig.com)

Ripping

6

An example from the real world

Content Distribution
Pattern

iT
u

n
e
s

iP
o

d

… If you squint just a little tiny bit …You might have actually
seen this pattern before….

Downloading

Ingestion Interface

Data Service Interface

Content Sources

Content Master

Application Pre-Render
Engine

Presentation

Application
Service Interface

… And its just as valid for
systems dealing with Stock
quotes handling 100,000‟s
updates per second

… But for quote systems
(like anything) the
interfaces, protocols and
databases used must be fit
for purpose. The pattern
remains the same.

The
Net

http://www.apple.com/ipod/

Copyright © Ian Koenig
(professional.iankoenig.com)

Adding metadata to the model

Content Distribution
Pattern

In addition to the data that flows through the system,
associated metadata flows too.

Content Master

Pre-Render

Engine

Presentation

S
e
r
v
ic

e
A

p
p

li
c
a
ti

o
n

Ingestion Interface

Data Service

I/F

Metadata - exists everywhere data exists. In general it
is carried like an associated dataset through the system,
but may have a distinct schedule by which it is
refreshed.

In general it is a good idea to separate metadata that
changes only when the data model changes (i.e. a new
version is published) from metadata that can be
changed dynamically (i.e. without changing versions).
We call this distinction design-time metadata vs. run-
time metadata.

App Service

I/F

M M

M

M

Caveat: One person‟s data is another person‟s metadata and
whether you treat an item as data or metadata can often be
contextual and change over time. So it is important to always
qualify the use of the term metadata in practice.

7

Copyright © Ian Koenig
(professional.iankoenig.com)

8

Ripping

Metadata in iTunes

Content Distribution
Pattern

iT
u

n
e
s

iP
o

d

In the iTunes model, the “Data” is the digital representation
of the song. The metadata is the descriptive information,
such as: Artist, Genre, Album, Track, Song Title, and your
personal content like: rating.

Downloading

• Metadata is initialized from the source and may be
edited / corrected in the master (iTunes on your
PC). It also may be updated from a more
dependable source or the content may be extended
from a more complete source (e.g. loading album
art from the iTunes store on The Net).

The
Net

MM M

M

M

• Metadata is downloaded with the data and kept
“associated”, otherwise all you would have is a
stream of bits.

http://www.apple.com/ipod/

Copyright © Ian Koenig
(professional.iankoenig.com)

Further extending the pattern

Presentation

9

Content Distribution Pattern

S
e
r
v
ic

e
A

p
p

li
c
a
ti

o
n

o
r

Often, the application pre-render engine
aggregates content from multiple masters.

When this occurs, the application pre-render
engine is creating unique new value and is
therefore in essence a new “service”.

Publish Pub Pub

Consume Consume

Data Service Interface (Contract)

Data Service Interface – What we‟ve called
the Data Service Interface so far is really two
parts. The publish side interface that is owned
by the master and the consume side interface
that is owned by the application pre-render
engine.

It is the contractual relationship between these
two sides of the interface that is key to proper
service orientation and loose coupling.

Copyright © Ian Koenig
(professional.iankoenig.com)

The Data Interface Problem Domain

Synchronization

Master

(Publisher)

Application

(Consumer)

Discovery & Connection

Master

(Publisher)

Application

(Consumer)

Service

Contract
Service

BrokerB
in

d

Initialization

Master

(Publisher)

Application

(Consumer)

10

Copyright © Ian Koenig
(professional.iankoenig.com)

Data Interface: Discovery & Connection

Discovery & Connection

Master

(Publisher)

Application

(Consumer)

Service

Contract
Service

BrokerB
in

d

• Publishers should not a priori “know” consumers

• Publishers therefore need a “broking facility” so
that consumers can find them.

• Loose coupling and versioning are of paramount
importance

• SLAs and rebuild / update schedules are part of the
interface contract.

• UDDI (Universal Description, Discovery and
Integration) is an appropriate model to follow
(http://en.wikipedia.org/wiki/UDDI)

In a typical environment, it is desirable for publishers
(masters) and consumers (applications) to be de-coupled.
This allows independent versioning and cycle-times. It also
allows new applications and new publishers to be added to
the “network” without breaking anything.

11

http://en.wikipedia.org/wiki/UDDI

Copyright © Ian Koenig
(professional.iankoenig.com)

Data Interface: Initialization

Initialization

Master

(Publisher)

Application

(Consumer)

The master must provide a way for the application to build
from an empty state. Often this is through an extract file
that is FTP‟ed across the network and then loaded into the
target database.

A slight advance over this model is to create a full extract on
a schedule and then a Delta file from that point to the
present.

Initialization

Full Image

An application pre-render database / cache upon initialization

or after recovery needs a mechanism to fully rebuild its state

from the beginning of time.

Cumulative Delta

A cumulative delta includes all changes from the previous

full rebuild, so to initialize, an application generally

processes the most recent Full rebuild AND the most recent

Cumulative Delta

12

Copyright © Ian Koenig
(professional.iankoenig.com)

Data Interface: Synchronization

Synchronization

Master

(Publisher)

Application

(Consumer)

Once an application has initialized (reached a synchronization
point) it begins to go stale, it needs to stay updated as
changes are made to the master.

• If the master provides no synchronization interface, then
the application is forced to periodically start over (i.e. re-
initialize)

• Alternatively, masters can package all changes from a
previous point into an “Incremental Delta” file and
distribute that.

But other forces are at work …

• The “more up-to-date” the application is (i.e. the more its
state represents the state of the master) the more value.

• Large files tend to clog up the network, so operationally
we tend to move these during off-hours. Unfortunately
that can mean small time windows and if many masters
are moving many large files at overlapping times,
switches can overload and file transfers will fail.

Which just moves us in the direction of moving smaller bits of
data more often, which is really no surprise since market data
systems have been doing that since they were first invented.

13

Copyright © Ian Koenig
(professional.iankoenig.com)

Data Interface: Event based Synchronization

Synchronization

Master

(Publisher)

Application

(Consumer)

The highest value and most efficient mechanism for
synchronizing application (consumers) from content masters
(publishers) is for the master to publish events signifying
that a change has occurred.

pub

sub

• When the master creates an event message representing
a change made to its database, it is expected that
message represent an entire transaction (i.e. is fully
process-able).

• The ordered set of event messages from a single master
constitutes an event stream

• The set of event messages across all content masters
constitutes and event cloud.

14

The internal physical data model of the master should be
transformed in a canonical data model for distribution. This is
a data model where there are no fragile keys. In other words,
all internal keys used to link tables internal to the master
have been removed and all keys used across masters are
represented by proper public identifiers or properly mastered
permanent GUIDs to external Entities (another discussion)

Copyright © Ian Koenig
(professional.iankoenig.com)

15

Example Envelope for an Event Message

<?xml version="1.0" encoding="UTF-8"?>

<ContentEnvelope majorVersion = “1” minorVersion = “0.7” xmlns=""

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:item=“http://contentSet.schemas.myCompany.com/2008-07-20/ >

<Header> Some Header Info </Header>

<Body " majorVersion = “1” minorVersion = “2.0”>

<ContentItem action=“Add”>

<NewsML xmlns ="http://iptc.org/std/NewsML/2003-10-10/">

Your NewsML

</NewsML>

</ContentItem>

<ContentItem action=“Modify”>

<NewsML xmlns ="http://iptc.org/std/NewsML/2003-10-10/">

Your NewsML

</NewsML>

</ContentItem>

</Body>

</ContentEnvelope>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://contentset.schemas.yourcompany.com/2008-07-20/
http://contentset.schemas.yourcompany.com/2008-07-20/
http://contentset.schemas.yourcompany.com/2008-07-20/
http://contentset.schemas.yourcompany.com/2008-07-20/
http://contentset.schemas.yourcompany.com/2008-07-20/
http://www.w3.org/2001/XMLSchema-instance
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/
http://iptc.org/std/NewsML/2003-10-10/

Copyright © Ian Koenig
(professional.iankoenig.com)

Changed Data Capture as an Enabling technology

Initialization /

Synchronization

Transaction

Log

Table
Table

Table

Event Stream

Transform

Most databases were not built to propagate changes, but
“Changed Data Capture” technology can be utilized to fill
the gap.

Content Master

Publish

Log Mining – is a technique that watches

the transaction log that modern databases

use to capture all changes as they are

made.

Transformation– The final step is

transforming the transactional changes

made to the databases to XML messages

that capture the “business event” process-

able downstream.

16

Copyright © Ian Koenig
(professional.iankoenig.com)

Event driven Content distribution Services

Content Distribution
Pattern

With a keen eye towards encapsulation and loose coupling, and
assuming that the application pre-rendering tier adds “enough”
value, we can view each tier as an independent Service in an
SOA, one which has an event-oriented interface, one which has
an inquiry-response interface

Content Master

Pre-Render

Engine

Presentation

S
e
r
v
ic

e
A

p
p

li
c
a
ti

o
n

Publish

Consume

Provide

Consume

Pub Pub

Consume

Content Master

Publish

Consume

Pre-Render

Engine

Consume

Provide
Initialization /

Synchronization

17

Inquiry /

Response

Copyright © Ian Koenig
(professional.iankoenig.com)

The End

Everybody‟s infrastructure needs improvement

Copyright © Ian Koenig
(professional.iankoenig.com)

Appendix

Copyright © Ian Koenig
(professional.iankoenig.com)

20

A Financial Entity Model – to link Content sets together

Geographies
Regions, Countries,
Physical Features

Sectors + Industries
Sector Hierarchy
(Multiple Schemes)

Event

Regional Events
Economic Events

D
o
m

ic
ile

d
 i
n

Officer of

Organization
Analyst For

Person
(Multiple Roles)

Quote,
Level 1, Level 2,
IOI, Advertisement,

Markets
Groupings of Market
Participants

Index
Equity Index
Benchmark Bond

Instrument
Equity, Bond, Future,
Spot, Derivative, et al

Indicator
Economics,
Market Stats

Listed

Organize

Govs +
Agencies

Corps Mutual
NGO

Charity
et al

Market Participants

Issues
Index For

Trade

Regulate

Account
Portfolio

Holding

Physical Asset
Currency, Commod,
Energy, Real Estate

Industry Events

Market Events

Gov’t Events

Corp Events
Corp Actions
Analyst Events

Account Events
Indicator For

Copyright © Ian Koenig
(professional.iankoenig.com)

21

Ass

et

Item

Body

E
N

T
IT

Y
 L

E
V

E
L

Aggr

egate Is
 d

o
m

ic
il
e
d

operates in

has quotes

is
 a

n
 i
n
d
e
x

fo
r

Subsidiary of

p
ro

vi
d
e
s
 q

u
o
te

s

Geography
(Regions, Countries)

Industry
(Multiple Schemes)

Organization
Government/
Agency/Company

Quote, Trade,
IOI, Advertisement,
Order

Market
(Equity, FI, Commodity
et al)

Index
Financial Indexes,

Market
Participa
nt
(Exchang
e, Market
Maker, et
al)

Physical
(Currency,
Commodity)

Person
(Multiple
Roles)

Instrument
Security, Future,
Derivative, et al

Is
 g

ro
u
p
e
d
 b

y

Analyst for

Officer of

Issues

Listed on

segments

Is indicator for

Is
 i
n
d
ic

a
to

r
fo

r

Account

Portfolio
Indicator
Economics,
Market Stats

Event
Corp. Action
Meeting, et al

Event For

Content Masters perform Master Data Management

• There are two types of Content Masters: Entity Authorities and
Data-set authorities.

• Entities are those Content sets (e.g. Companies, People,
Geographies, Instruments, et al) that link the other Data-sets
together (e.g. in the Financial world: Company Fundamentals,
M&A, Company Ownership, et al)

• Entities are joined via Relationships. An RDF-style triplet
Resource Description Framework approach is used to do this
(http://en.wikipedia.org/wiki/Resource_Description_Framework)

• It is considered Best Common Practice to assign all Entities
Permanent GUIDs to uniquely represent them and to use these
permanent GUIDs as early in the API call tree as possible in
deference to mnemonic aliases.

Entity Authorities

Data-set Authorities

Entity Model

For example “C” is not the symbol for “Citigroup Inc.” It is the symbol for the

NYSE quote for Citigroup Common Stock, but only since Chrysler Corp was

acquired by Daimler and gave up the symbol “C”, which it had for its common

stock. So not only does the symbol not actually represent the company

consistently in time, many companies issue ADRs and list on multiple

exchanges making the use of quote symbols as company identifiers highly

problematic

http://en.wikipedia.org/wiki/Resource_Description_Framework

Copyright © Ian Koenig
(professional.iankoenig.com)

22

Content is Pre-Rendered to make “predictable queries fast”

• Content Services distribute Content across their Data Interface in

their Canonical data Model.

• The Services Canonical data model is the data Model optimized

for distribution and specific to no one consumer.

• When an application consumes content from a service, its first

order of business is to transform that content into something

quickly renderable / presentable through its Service Interface.

• It is not allowed for the Pre-render step to create new content

(otherwise the new content is not really mastered), except under

rigorously controlled circumstances

For example, it is acceptable for the pre-render step to calculate data “on-

the-fly”, as long as all of the values needed for the calculation are mastered

and the formula upon which the calculation is based is mastered.

Copyright © Ian Koenig
(professional.iankoenig.com)

2323

Content Distribution – Ten Governance Policies (1 of 2)

1. Human Interfaces: Presentation servers access content from the pre-Render layer through a well
defined Service Interface. They never access Content Masters and Data interfaces directly.

2. Application Pre-render Databases: access data from Content Masters through a well defined
Data Interface (API). Pre-Render databases / caches are Copies. They do not create “new” data
except they may perform „on the fly‟ calculations as long as the result is not persisted (ex. Currency
conversion)

3. Content Masters: contain the “single version of the truth” for all data, created, acquired or derived.

4. Scalability: Content Masters tend to scale proportional to the amount of content. Application pre-
render databases / caches tend to scale proportional to both amount of content and usage.
Content Masters should be architected to scale vertically and Application pre-render databases
should be architected to scale horizontally

5. Physicalization: Content Masters and Application pre-render databases / caches belong in
a core network in the Data center (i.e. not a DMZ). Presentation / Human Interface
databases / caches belong in the DMZ. In a three network zoning model (i.e. where there is
an application zone between the DMZ and the Core network zone, the application pre-
render database / cache belongs in the application zone (duh!)

6. D/R: Content Masters should have synchronized copies in at least two Data Centers,
preferably in the same geo-region. Masters should be backed up and restored from tape in
a disaster. Application pre-render databases should be rebuilt from peers and synchronized
to the master. They may not need to be backed up to tape at all and hopefully never need to
be restored from tape. The same goes for presentation caches. Don‟t confuse D/R and HA.

7. Data Elements (Facts): (i.e. columns) The Content Master is responsible for creating a unique
Data Element Identifier for every piece of data it owns.

Copyright © Ian Koenig
(professional.iankoenig.com)

2424

8. Data Items: (i.e. rows of data) Only the Content Master is permitted to create an item of that data

class. The full list of Content Items (i.e. Entities and Datasets) is defined by the Information

Architecture. The Content Master is responsible for allocating a permanent GUID for every data

item it creates

a. Once a permanent GUID is allocated it may be sunset (if the data item it is associated

with has its “Effective To” date set). It may never be reused or take on a new meaning.

b. Only the Permanent GUIDs of Entities should be used to link content between datasets

Content Distribution – Ten Governance Policies (2 of 2)

9. Copying Data: When content is copied between databases, the following contract applies:

a. It is the responsibility of the copy to ensure it stays synchronized with the source. If the
source does not support a “push” style interface, then it is desirable that the copy is
periodically “dumped” and rebuilt.

b. The copy is responsible for preserving the “name” of the Data Elements and the FactIds (for
Traceability). Copies may not rename data

c. When a master copies data from another master (e.g. for the purpose of deriving new data),
the copy may not be on-passed from that DB; only the derived data can.

d. The exception to the on-pass rule is for “symbology and classification data”

10. Value Add Content: is derived and is distinct from vs. “As Collected” content

a. When new content is created (derived), this “value added” content must be mastered. This
could either be the value data itself or the business logic which drives the calculations in the
Application pre-render database.

b. It is best practice to master value-add data with the data class that it is most closely aligned
(rather than create a new class and a new master)

c. The process of creating value added data must not “lock out” the process for adding new
data or modifying data.

Copyright © Ian Koenig
(professional.iankoenig.com)

25

The Data Interface

• In the Content Distribution pattern, the Data Interface is defined to
provide the loosely-coupled interface contract across the boundary
between the content master and the application pre-render database.
It effectively governs the Service / Application boundary and the
Producer / Consumer boundary (i.e. its pretty important)

• A bus – style implementation of the data interface providing pub/sub
capability is considered best common practice. The subscription
protocol could either be topic based (like JMS) or content based (like
provided by emerging content routers (e.g. http://www.solacesystems.com/)

• The Data Interface is:

• One way

• Encoded in XML in the Canonical Data Model of each Content
Master

• Keyed by non-Fragile Unique Permanent Entity GUIDs

• Loosely Coupled: Sources should not „know‟ targets. Sources
publish. Targets subscribe. The Data Interface Bus mediates.
Interface contracts are enforced.

http://www.solacesystems.com/

