
On 18 September 2007, I gave a presentation at the 3rd EPTS (Event Processing Technology Society)
meeting and on 20 September I gave the same presentation at the Gartner Event Processing
Symposium.

Following is the content of that presentation:

About the Author

Ian Koenig joined Thomson Financial in September 2005. Ian assumed the role of Chief Architect,
reporting to the CTO, Bill Krivoshik. Ian has global responsibility for: Technology Strategy and Enterprise
Architecture (information architecture, service oriented architecture (SOA), physical architecture,
business architecture and solutions architecture) as well as architecture governance. Prior to joining
Thomson, Ian was the Chief Architect for Products and Platforms at Reuters, where he worked for 19
years (beginning in 1986).

Throughout his 20+ year career, Ian Koenig has held technical positions of increasing scope and
responsibility, beginning his career at Reveal Software on Long Island in 1982. Ian was one of seven
people who received the Windows Pioneer Award in 1994. Ian was recognized by the Industry as one of
the individuals who significantly contributed to the ultimate success of the Microsoft Operating system.
The award was presented by Bill Gates at Spring Comdex in 1994.
Ian received Bachelor’s degrees in Mathematics and in Biology from the University of Rochester in 1982.

He reached at: ian.koenig@thomson.com.

http://www.complexevents.com/
http://agendabuilder.gartner.com/ep1/WebPages/browsebyspeaker.aspx?menuItem=6
http://agendabuilder.gartner.com/ep1/WebPages/browsebyspeaker.aspx?menuItem=6
http://agendabuilder.gartner.com/ep1/WebPages/browsebyspeaker.aspx?menuItem=6
mailto:ian.koenig@thomson.com

In order to discuss the role of Complex Event Processing (CEP) and the interaction between the CEP
engine that processes the event streams and the content distribution fabric that delivers the event
streams, it is useful to have an architecture framework that helps to clarify the words we use. Following
is the framework / model we use at Thomson Financial.

In this model, we have content sources that generate streams of data. How they do this and how these
streams get into the engine is the subject of the rest of this presentation.

For the Content streams to be processed by the engine, they must be “adapted”. We define these
Stream adapters as the metadata / business logic required to describe the incoming content stream so
that it can be processed by the CEP engine.

Stream agents are pieces of business logic that “stay in the box” and whose responsibility it is to
“enrich” the data streams. They: (1) Listen to streams; (2) Use the functionality of the engine to
correlate and analyze the streams either in time or against each other or against a temporal repository;
And (3) they inject new streams or enrich exist streams. While this process is not dissimilar to what
happens in the Application logic box, we find it useful to distinguish the enrichment process from the
application process, even though they are both generally doing “complex event processing”

The Application Logic is then responsible for generating “what comes out”. We find two major classes of
this: (1) Activity monitors / alerts that are intended for a Human via a user interface and (2) New
content streams that can be pipelined back into another engine for processing. For example, using the
CEP engine to analyze market data, news and other input streams to perform Algorithmic trading is
significant use case that we deal with. In this case the output of the engine (via the application logic) is
an Order to buy or sell, generally encoded as a message in the FIX protocol that would either be input to
an Order management / Execution management system or via Direct Market Access (DMA) to a trading
venue.

[Subsequent to the meetings, I realize that I have left out a major use case, which is the use of CEP
engines to orchestrate Business processes, but I do not think that is a breaking change to the model].

But as everybody else is mostly focusing on what’s inside the CEP box, I thought it would be useful for
this presentation to concentrate on what’s “out of the box” or all the technology and the content

distribution fabric that gets the content streams into the CEP engine. I will also demonstrate the
usefulness of complex event processing further upstream in the network and talk about how some of
this type of logic becomes part of the distribution fabric / network and this adds value.

But before we get to this, as we are going to be “thinking outside the box”, I thought it would be useful
and potentially interesting to talk about where the colloquialism “thinking outside the box” came from.
It’s so common to use the phrase that it made me wonder what the derivation was. So I did a bit of
research. And the nearest I could tell (using Wikipedia as a source), the derivation of the phrase comes
from the classic “9 Dot Problem”

The “9 dot problem” poses the challenge of connecting all 9 dots with four straight lines, without ever
lifting the pencil from the paper. And as we all know by now, the solution requires you to “Think
outside the box”

Lots of focus exists on market data sources as inputs to CEP. By market data, we mean Level 1 and Level
2 data. Level 1 data generally means pricing data from trades and Bids/Asks from quotes plus volume
and size. Level 2 generally adds “Depth of the Book” including all the orders at all the price points to the
Level 1 data.

But as everybody else is talking about market data and in keeping with the “Thinking outside the Box”,
theme of this presentation, I thought I’d just skip over that and talk about the next content source of
interest, which we think is: News. There is quite a bit of press about News as a new source of data
driving algorithmic trading (pun intended)

So why is News interesting? Because News moves markets. But to use News as a source of algorithmic
trading, given that News is textual in nature and targeted at Human consumption, we need to enrich the
News content with computer processable constructs. We call this “Structured News” and the
enrichment takes the form of specific XML tags that are imbued with computer processable information,
embedded in the NewsML (XML) message.

We classify these tags into four general categories:

• Aboutness: What the news is about within a well-defined concept system (or ontology). Aboutness
is defined by: Entities and Subjects. These are the: Companies, People, Markets, Places, Business
Events, or Subjects (e.g. the Economy, Human Interest, etc.) that the news is “about”. In database
‘lingo’ Entities and subjects are all Entities, but we differentiate those Entities that link other content
sets (in our universe) together (like Companies, & people) and those that don’t. Those that do are
Entities. Those that do not are “Subjects”. To further help distinguish these, often confusing terms;
it is useful to note that Subjects tend to take the plural form. In other words they tend to be types
of things and groups of things. Entities tend to take the singular form. An Entity is an Object.
Examples always work better: Companies are entities because you think of a specific company as a
thing. “Human Interest” is a subject, because it’s a group of things not a thing. I wish I could be
more precise in the language that describes these concepts because the distinction is important.
But I am just not there yet.

• Genre: (or Type): Is this a story, a feature, a market report, a blog, an opinion, a rumor, or
something else?

• Facts: Specific numbers, such as Economic releases or Company Earnings that are tagged with XML
elements

• Sentiment: Is the Story generally positive, negative or neutral about the subject(s).

When a person authors a research report, or offers an opinion or provides commentary, it’s good to
specify sentiment, because the author knows whether she has a positive, negative or neutral opinion on
the subject. There is a bit of press about the technology for using computers to derive sentiment. We
(at Thomson Financial) are somewhat dubious of the claims of these technologies, so we do not
algorithmically derive sentiment. Instead we present the “facts” and let the consumer (probably using
CEP engines or the equivalent) interpret whether the facts present a positive, negative or neutral
position (unless of course we got sentiment from the author – which we treat as “fact”)

Aboutness, Genre, Fact and Sentiment “tags” are added both at the document level and marked up in-
line. For Aboutness and Facts, we use Computer algorithms to enhance the traditionally human process
of categorizing news. This is called auto-categorization and I will talk in a bit about the really cool
technology that does this.

But first, let’s dive a bit deeper into what we mean by: Aboutness

In order to know what a News story is about, you need a concept system that defines the universe of
terms in your Aboutness vocabulary. We call this type of concept system The Metaverse (or metadata
universe). For Thomson financial, the Metaverse is called “Thomson Master Categories (TMC)”. In
Thomson Master Categories, the concept system is presented as an ontology of terms, the backbone of
which are the Entities and Subjects I spoke about before.

http://en.wikipedia.org/wiki/Ontology_%28computer_science%29

The canonical ontology is intended for computers. It consists of the set of tags that we attach to the
documents. In the canonical ontology, the philosophy is “the more precise and the more granular, the
better”. Computers can easily deal with ontologies of 10’s of thousands of terms.

Let’s take a look at how a Human interface would use the enriched News content to add contextual
links. It should not be too difficult to imagine how a computer would use these same techniques to
algorithmically trade.

In this example, we have enriched the News document with Aboutness information. We know, for
example, what Companies are referenced. In the above example, which is about Merck and Schering
Plough and the Pharmaceuticals Industry, we can use this contextual information to present the latest
prices for these companies and related information on the Industry (such as related news or a sector
based index). But when we say something like “What’s the price of Merck”, we are saying a mouthful;
because we really don’t mean the price of the company. We mean the latest quote from the default
pricing venue (I.e. a Stock Exchange, like NYSE) for the common stock issued by the company. So while a
human immediately know what you meant when you asked for the price of the company, a computer
has to navigate the entity relationships in the Metaverse to figure it out.

For the “geekier” among us, let’s take a look at the actual NewsML, and how we enrich it to embed
computer processable information in what is otherwise text targeted at a human.

NewsML is an Industry standard, XML schema used for marking up and distributing News. NewsML G2
is the most recent proposed version of NewsML and is the version we refer to here. When we enrich
the News, we embed tags that identify the subjects and Entities that the News is about. When we find a
relevant fact, we mark that up too. There are two levels of tagging: Document level and in-line. The
document level tagging tells you what the whole document is about and when we find an Entity or a fact
in-line that we recognize, we put an XML tag around it to identify it in situ. So we can pull out a
company reference, or a reference to a person, as in the example above. When we find an entity, we
match it against an authority file that gives it a GUID, which is also permanent (i.e. never changes).

Marking up XML is not something that humans are particularly good at. Luckily there are computer
algorithms that can assist.

http://en.wikipedia.org/wiki/NewsML

The technology we use at Thomson is called: CaRE (Categorization and Recommendations Engine). It is
based on a framework and a whole bunch of science around information processing. (Please see
extracted references in the slide). For identifying subjects, the technology uses statistically based
algorithms that you train. In other words, you show the system for each subject in your concept system,
maybe 10 documents that are about the subject and maybe 5 that are not. The technology framework
figures out which combinations of words and phrases are likely to “mean” that subject. If you don’t like
the precision you get, you add more training documents. The structure of the document is not
particularly relevant to CaRE. Care treats the document as a “bag of words”.

Entity Extraction is a bit more algorithmic (as opposed to being statistically based) and a bit more
dependent on understanding the structure of the documents. Entity extraction is done in two steps:
identification and resolution. The Identification process finds word groups that “look like” a company or
that “look like” a person (or another Entity) . It also tries to pull out secondary evidence, like the
Industry of company or the role of a person. The extracted entity and the secondary evidence is then
passed to a Resolution process, which matches the entity name and the secondary evidence against an
authority file, that would assign the Permanent GUID if the Entity is known, or initiate a process
whereby a Data analyst may choose to add the new entity to the authority file.

http://www.jacksonpeter.com/works

Now that we have talked about News (noting that it is not a number-oriented row/column based data
source) as an additional “interesting” content stream that we want to process and correlate with Market
data other data streams, let’s talk about the nature of the distribution fabric (or network) that exists to
distribute content to the consuming applications.

We have market data content streams and now we have news content streams. We know about the
complex event processing logic that consumes these streams. Now, we will cover the Event processing
logic that we can build into the distribution fabric between the source and the destination.

In order to understand the nature of the Content Distribution Fabric, we will discuss it in the context of
an architecture framework / model that helps define the words we use in the context that we use them.

The Fabric itself provides three main capabilities:

• Intermediation – The process by which we connect service providers (e.g. content sources) and
service consumers (e.g. CEP applications). These must be “loosely coupled” so we provide a

meta-data driven service broker to connect them. By loose coupling we mean:
the ability to make a breaking change in the interface (i.e. non-backwards compatible change)
without actually breaking the application, so that we can move from the previous version to the
next version upgrading provider and consumer independently, one at a time, and in either
order. The Service broker follows a “Register, Find and Bind” pattern. Providers publish onto
the bus. Consumers subscribe. The bus mediates.

• Initialization – is the process by which we get a service consume starting from scratch with an
empty database to a known “synchronization checkpoint” as defined by the content source.

• Synchronization – Is the process by which we keep the service consumer updated as changes
are made to the content source. This is event based distribution of messages over a content
aware network. The content aware network is based on a set of “XML routers” that basically
provide a pub/sub network, where XPATH expressions are used to define “interest” in a steam
of content, and the XML routers then pass XML documents between each other in a manner
similar to how a standard routers use IP Addresses to know which packets go where.

XML is the “Enabling technology” for content based distribution. There is a ton of industry effort
targeted towards XML and being able to leverage that effort pays dividends. The key XML standards (for
us, today) are:

XPATH - The XML Path Language (XPath) is an expression language that allows for addressing parts on
an XML document. XPath models an XML document as a tree in which elements, attributes, and content
are nodes. Its name is derived from the use of the slash separator to descend the branches of the tree.
An XPath expression “selects” a node-set (one or more nodes), e.g. a string, a number, or a Boolean.

XSLT - XSLT is typically used to transform an XML document into another XML document. It does this
with style sheets. XSLT stylesheets are similar to Cascading Style Sheets, with two exceptions: XSLT

stylesheets are written in XML, and XPath is used to determine which parts of the original document to
transform.

An interesting standard that may be interesting as well is XQUERY. Today’s CEP engines seem to use
extensions of SQL as their language (not all, but many). But if you accept the proposition that non-
numeric, non-row/column oriented data becomes important for CEP engines to process, then one has to
ask the question whether we should jump to XQUERY or keep extending SQL. I do not have an opinion
on the subject (at least not today).

The major impediment to the wholesale adoption of XML for encoding data (at least for us) has always
been the technical limitations associated with the size of the message, the performance impact of
parsing the message and the cost impact on the distribution networks. But there is a new class of
technology that is XML aware, routing content by interest, where the XML logic is implemented on
hardware, so in addition to being functional it is also fast.

The technology we have started to use is the Solace Systems VRS/32. Its not the only one out there, but
it’s the one we have settled on. And with this technology as the basis of our content aware pub/sub
distribution fabric, we can achieve:

 Message throughput (across an individual device) of > 1 million (small) messages per second.

 Thousands of XSLT transforms per second

 Active/active fail-over without message loss (in a single data center)

 And most importantly, message transit times (across a single device) of 700 microseconds for a
4K XML message, under load.

So effectively, by using hardware based content routers, XML should no longer be a technological
hurdle. I need to qualify that last statement a bit. We still do not envision distributing market data via
XML any time soon. Given data rates and explosive growth, this just does not make sense at the present

time with the present technology base. But for lots and lots of other data sets, it makes perfect sense
and the benefits are huge.

For example, as a subscriber you can get the network to filter the message streams based on any
element or attribute in the XML. You don’t have to “design the namespace” of available topics that can
be subscribed to. Once XML is published onto the bus, a subscriber can retrieve it, by specifying an
appropriate XPATH expression.

The network thus allows publishers to publish in a subscriber agnostic way. Since the network does the
filtering, the subscribers are not overloaded when additional content becomes available. Another
source of network optimization is that the subscriber can define an XSLT transform to “reduce” the
message and only pass that subset of the schema which is of interest. So if the publisher creates a
schema with 4000 elements and the subscriber only wants six, an XSLT can be defined to reduce the
message down to the six elements of interest. This reduction is performed only for that subscriber. A
different subscriber can define a completely different XSLT transformation / reduction, or just take the
full message.

So now that we have talked about News as a content stream and we have talked about the content
distribution fabric that provides some interesting capabilities for distributing to subscribing applications,
such as CEP engines, we should immediately see that the possibilities for other interesting sources of
content that can be used by algorithmic trading applications. The possibilities are numerous. Content
such as: Broker Research or Estimates, Company briefings or flings, Deals (mergers and acquisitions) and
more can all be made available in a form convenient to process, analyze and correlate with other
content streams. Each of these types of data would be transformed into an XML model and events
would be streamed over the distribution fabric to subscribing applications.

Now that we have passed the “XML hurdle”, the next technology issue we hit is the act of creating the
proper XML data model for distribution. Most of our data is stored in relational databases and relational
databases store data in physical tables. To create truth, the Relational data model is often highly
normalized, so a single data element exists exactly once. There tend to be lots of tables, lots of foreign
keys and the databases are optimized for update rather than retrieval.

But what we want to come out of the database in the form of events are logical constructs we call
canonical business entities. Furthermore we want the granularity of the event stream these to map to
the business events that caused the database to change in the first place.

Unfortunately by the time you want to create the output, in many of the existing content masters, the
incoming business event has been totally deconstructed in order to store the data physically in the table
structure. What we really want to do is to reconstruct that event and transform the physical table based
model into the logical canonical model.

The newer databases we have created use an architectural model, we call a “publishing pipeline” where
the database business logic preserves the business event (as it came in) and uses that to guide the
production of the output. Older databases, where the deconstruction of the originating business event
is complete, just have to do the heavy lifting to reconstruct the logical data model by extracting and
transforming the physical table model.

Fortunately, many of the databases we have looked at nearly preserve the business events in the form
of the transactions that are committed to the database. In other words, whether by good planning or by
good luck, the database transactions as written map close enough to the business events we want to
model to be very, very useful.

But you still have to extract the data and process the events and emit the messages and for many
databases (and database developers) that’s hard. Most of these databases were built assuming the
data would be “at rest”, not “in motion”. In fact the whole concept of event processing and “Data in
motion” is foreign to many database developers. But once again there is technology that can help. This
class of technology is called Changed Data Capture. It either uses triggers to recognize that data has
changed or a process called log mining. Most modern databases have a transaction log, which is the
golden source of all transactions committed to the database. In fact you can look at the database itself
as a “latest value” representation of the transaction log (okay, that’s a bit abstract, and not important to
the discussion – but still interesting). Log mining is a process whereby Changed Data Capture
technology watches and recognizes when a transaction has been written to the transaction log (meaning
the transaction has been committed to the database). It can then read the transaction, perform the
transformation (which of course you have to define) and initiate the message flow downstream. This
could be via its own middleware to a set of target applications, or onto your middleware bus via an API
(like JMS).

While it is best for a database that is mastering data to use the “publishing pipeline” pattern where the
incoming business events are preserved and messages are emitted once the transaction is committed,
for those not built this way, Changed Data Capture technology can make the act of moving into the
event-based world a bit easier.

This all hints at a larger architectural pattern governing the flow of content from source to consuming
application, and content distribution systems in general.

I’ve read lots of the literature and research that refers to the Enterprise Database as this amorphous
“mass” of uncoordinated data and which positions SOA (Service Oriented Architectures) as the white
night to slay the dragon of chaos. Maybe it is? Or maybe, with any technique like SOA or OO or MDM
or “pick your favorite acronym” comes a degree of architectural rigor that if properly applied both
technologically and organizationally, creates order from chaos? Either way, the main value of Enterprise
Architecture to any business is to provide a framework in which business imperatives can be translated
quickly, easily and with high fidelity into technology solutions.

Our Content Distribution Pattern learns the lessons from market data and data-feeds and applies those
lessons widely across the world of content. What we learn is that The Enterprise Database is not a
single thing. In fact we see two distinct classes of databases (and we use the term database very loosely
here):

 Content masters – which exist to house the single version of the “truth”. These are databases of
record or the house of “gold” data.

 Application databases – which exist to make predictable queries, fast. Here is where use the
term “database” very loosely. Often these are databases. For content, almost always. For high
volume, high velocity data, these are purpose built, memory based databases. And this is the
place in this pattern where CEP engines are making their initial impact.

Content masters are generally highly normalized, highly optimized for update, and never delete data (at
least those that follow the rules are). Application databases are generally highly de-normalized and
optimized for search and retrieval. Between them is the “Data Interface”, which provides:
Intermediation, Initialization and Synchronization capabilities. The Content Distribution Fabric provides
the concrete implementation for the data interface over a Content aware network.

This pattern may seem a bit abstract, but if you squint just a little, tiny bit, you may notice that you’ve
seen it before…

If you have an IPod, you’ve done this. You’ve followed the Content Distribution Pattern. Because
you’ve ingested content from its source; you’ve created a master database (on your PC or Mac); you’ve
added metadata (via ITunes) to properly describe the data that you’ve mastered; and you’ve distributed
that data (either all or in subsets), to your application database (the IPod itself) which holds a copy of
the data in a database optimized for retrieval, and accessed that data via the Human Interface. So,
maybe its not so abstract after all?

And in summary, while today we really do have this dichotomy between data in motion (like Market
Data and News) and data at rest (like stuff you search for), as we move forward, the line between these
will change (but not go away). More data can and should be dealt with “in motion” and handled via
event processing technology.

After all, we are all Event processing animals. We handle events as they happen, like when a phone
rings, we answer it; when the alarm clock goes off, we wake up. I don’t know anybody who sits there
and stares at the alarm clock all night until 6:00 AM, in order to realize it’s time to wake up. We process
the “clock ringing” event. But for some reason, most of our applications are written to watch the clock,
not process the event. Hmmm?

There is some interesting technology coming to market that breaks down some of the traditional
technological barriers that have made processing events hard. I’ve described a few in the context of this
presentation, but there are more out there, and I am sure, even more on the drawing board.

As these technologies make their way into the enterprise infrastructure, we will be moving down the
road of event based distribution of information and complex event processing in the application tier.

I hope that by “thinking outside the box”, I’ve been able to offer some interesting and relevant
information that provides context to the kinds of exciting things we can do with the technology we have
today. I hope it also provides some insight to the vendors of these technologies as to where innovations
in the technology landscape will provide value in the near future.

